A biodynamic understanding of dietborne metal uptake by a freshwater invertebrate.

نویسندگان

  • Marie-Noële Croteau
  • Samuel N Luoma
چکیده

Aquatic organisms accumulate metals from dissolved and particulate phases. Dietborne metal uptake likely prevails in nature, but the physiological processes governing metal bioaccumulation from diet are not fully understood. We characterize dietborne copper, cadmium, and nickel uptake by a freshwater gastropod (Lymnaea stagnalis) both in terms of biodynamics and membrane transport characteristics. We use enriched stable isotopes to trace newly accumulated metals from diet, determine food ingestion rate (IR) and estimate metal assimilation efficiency (AE). Upon 18-h exposure, dietborne metal influx was linear over a range encompassing most environmental concentrations. Dietary metal uptake rate constants (k(uf)) ranged from 0.104 to 0.162 g g(-1) day(-1), and appeared to be an expression of transmembrane transport characteristics. Although k(uf) values were 1000-times lower than uptake rate constants from solution, biodynamic modeling showed that diet is the major Cd, Cu, and Ni source in nature. AE varied slightly among metals and exposure concentrations (84-95%). Suppression of Cd and Cu influxes upon exposure to extreme concentrations coincided with a 10-fold decrease in food IR, suggesting that feeding inhibition could act as an end point for dietary metal toxicity in L. stagnalis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting dietborne metal toxicity from metal influxes.

Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We char...

متن کامل

Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes.

The biotic ligand model considers the biological and geochemical complexities that affect metal exposure. It relates toxicity to the fraction of physiological active sites impacted by reactive metal species. The biodynamic model is a complementary construct that predicts bioaccumulation and assumes that toxicity occurs when influx rates exceed rates of loss and detoxification. In this paper we ...

متن کامل

Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate fauna...

متن کامل

Bioavailability of particulate metal to zebra mussels: biodynamic modelling shows that assimilation efficiencies are site-specific.

This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions fr...

متن کامل

Stable metal isotopes reveal copper accumulation and loss dynamics in the freshwater bivalve Corbicula.

Characterization of uptake and loss dynamics is critical to understanding risks associated with contaminant exposure in aquatic animals. Dynamics are especially important in addressing questions such as why coexisting species in nature accumulate different levels of a contaminant. Here we manipulated copper (Cu) stable isotopic ratios (as an alternative to radioisotopes) to describe for the fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2008